counteracting the ubiquitylation of a particular protein by its cognate E3 and/or proofreading synthesized UBIQ chains

counteracting the ubiquitylation of a particular protein by its cognate E3 and/or proofreading synthesized UBIQ chains. health. Republished from Current BioData’s Targeted Proteins database (TPdb; Broad overview of family Overview of the ubiquitin system Aceglutamide The ubiquitin system is a hierarchical enzymatic cascade in which a ubiquitin-activating enzyme (E1) activates the 76 amino acid protein UBIQ (ubiquitin) in an ATP-dependent manner and transfers it to the active site cysteine of ubiquitin-conjugating enzymes (E2s) [1]. Aceglutamide Ubiquitin ligases (E3s) have a central role in the process of protein modification with UBIQ (known as ‘ubiquitination’ or ‘ubiquitylation’); they recognize specific substrates and facilitate UBIQ transfer from the E2 onto the substrate. Although the precise number of human E3s is unknown, about 500 or more have been proposed to exist [2-5], supportive of the broad role for the ubiquitin system in regulating diverse cellular processes. Ubiquitin-like proteins (UBLs) have also been identified with varying degrees of identity to UBIQ and are conjugated onto proteins through Aceglutamide similar enzymatic cascades as UBIQ. Numerous deubiquitylating enzymes (DUBs) have roles in processing polyubiquitin precursor proteins and may also have regulatory roles, e.g. counteracting the ubiquitylation of a particular protein by its cognate E3 and/or proofreading synthesized UBIQ chains. There are also emerging roles for DUBs in disease (see [6]). Ubiquitin binding proteins also have diverse functions and may represent viable therapeutic targets (see [7]). In a general sense, they act as ‘effector’ proteins that sense a protein’s modification with UBIQ and facilitate downstream signaling. Two major classes of E3s have been identified and this classification is largely based on how they facilitate UBIQ transfer from E2 onto substrate. HECT (homologous to E6AP C-terminus) domain E3s form a catalytic UBIQ intermediate on a conserved cysteine residue prior to covalent UBIQ transfer (see [8]). The second class of E3s, which contains RING-type and structurally related ligases, facilitates the direct transfer of UBIQ from E2 onto substrate. In general, E3s facilitate covalent UBIQ Rabbit Polyclonal to MRIP transfer by properly positioning the site to be modified (i.e. a lysine residue of its recognized substrate) such that it can perform Aceglutamide nucleophilic attack of a thioesterified UBIQ molecule either on the active site of the E2 for RING-type E3s or on the conserved cysteine of HECT domain E3s, resulting in isopeptide bond formation [9]. Lysine residues appear to be major sites of UBIQ attachment on proteins, although N-terminal and cysteine modifications have also been reported [10-17]. The type of UBIQ modification could confer distinct encoded protein fate and we are only beginning to understand how this process occurs and how it is recognized and interpreted. Mono-ubiquitylation (i.e. the attachment of a single UBIQ molecule to a single site on a protein) may be involved in histone regulation, receptor endocystosis and signaling [18-22]. UBIQ chains using a lysine residue of one UBIQ molecule attached via an isopeptide bond to the C-terminus of another UBIQ molecule Aceglutamide add further complexity to UBIQ-encoded protein fate. Lys48-linked UBIQ chains can trigger degradation by the 26S proteasome [23-26] and Lys63-linked UBIQ chains may regulate signaling pathways [27-30] when attached to a protein. Other types of linkages (including those containing heterogeneous mixtures of linkages or branched chains) could also exist [31-33]; however their roles and physiological significance are currently unclear. Target validation Implication of the ubiquitin system in human disease The basic functions of.